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Abstract. We consider simple cube-curves in the orthogonal 3D grid of
cells. The union of all cells contained in such a curve (also called the tube
of this curve) is a polyhedrally bounded set. The curve’s length is defined
to be that of the minimum-length polygonal curve (MLP) contained and
complete in the tube of the curve. Only one general algorithm, called
rubberband algorithm, was known for the approximative calculation of
such an MLP so far.
An open problem in [7] is related to the design of algorithms for the
calculation of the MLP of a simple cube-curve: Is there a simple cube-
curve such that none of the nodes of its MLP is a grid vertex? This
paper constructs an example of such a simple cube-curve, and we also
characterize the class of all of such cube-curves. This study leads to
a correction in Option 3 of the rubberband algorithm (by adding one
missing test).
We also prove that the rubberband algorithm has linear time complexity
O(m) where m is the number of critical edges of a given simple cube
curve, which solves another open problem in the context of this algo-
rithm.

1 Introduction

The analysis of cube-curves is related to (e.g.) path planning in a cuboidal world
of robots, or length estimation in 3D image analysis; for recent applications of
the rubberband algorithm of [1] in 3D medical imaging, see, for example, [4, 13].

A cube-curve can be seen as the result of a digitization process which maps
a curve-like object into a union S of face-connected closed cubes. The length of
a simple cube-curve S in 3D Euclidean space can be defined by the (Euclidean)
length of the minimum-length polygonal curve (MLP for short) contained and
complete in the polyhedrally bounded compact set S [10, 11].

1.1 Related Work

The computation of the length of a simple cube-curve in 3D Euclidean space was
a subject in [5]; the proposed method is based on adding weights of local steps.
[1] presents an algorithm (there called the rubberband algorithm) for computing
an approximate MLP in S with measured time complexity in O(n), where n is
the number of grid cubes of the given cube-curve. The rubberband algorithm is
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not based on local weights, rather on an iterative scheme for optimizing positions
of nodes of polygonal curves, supposed to converge against the MLP. We refer
to [1] or to Section 11.1.4 in [7] for a detailed description of the rubberband
algorithm, and for its iteration steps see Appendix 1.

The difficulty of the computation of the MLP in 3D may be illustrated by
the fact that the Euclidean shortest path problem (i.e., find a shortest obstacle-
avoiding path from source point to target point, for a given finite collection
of polyhedral obstacles in 3D space, a source, and a target point) is known to
be NP-hard [2]. However, there are some algorithms solving the approximate
Euclidean shortest path problem in 3D with polynomial-time, see [3]. So far it is
not yet shown whether the rubberband algorithm is always convergent towards
the correct MLP, or not (i.e., so far never a provable incorrect result has been
obtained).

Recently, [8] developed a polynomial-time algorithm for the calculation of
MLPs which is provable correct for a special class of simple cube-curves. The
main idea is to decompose a simple cube-curve into some kinds of arcs by finding
“end angles” (see Definition 4 below) in the given simple cube-curve.

There is an open problem (see [7, page 406]) which is related to the design
of algorithms for the calculation of the MLP of a simple cube-curve: Is there a
simple cube-curve such that none of the nodes of its MLP is a grid vertex? This
paper constructs an example of such a simple cube-curve, and generalizes this
by characterizing the class of all of those cube-curves. Cube-curves in this class
do not have any end angle; this means that we cannot use the MLP algorithm
proposed in [8] which is provable correct. This is the basic importance of the given
result: we show the existence of cube-curves which require further algorithmic
studies, in particular the question whether the (corrected) rubberband algorithm
always generates a unique spatial polygon or not.

1.2 Notations and Definitions

Following [1, 6], a grid point (i, j, k) ∈ Z3 is assumed to be the center point of
a grid cube with faces parallel to the coordinate planes, with edges of length 1,
and vertices as its corners. Cells are either cubes, faces, edges, or vertices. The
intersection of two cells is either empty or a joint side of both cells. A cube-curve
is an alternating sequence g = (f0, c0, f1, c1, . . . , fn, cn) of faces fi and cubes ci,
for 0 ≤ i ≤ n, such that faces fi and fi+1 are sides of cube ci, for 0 ≤ i ≤ n and
fn+1 = f0. It is simple iff n ≥ 4 and for any two cubes ci, ck ∈ g with |i− k| ≥ 2
(mod n + 1), if ci

⋂
ck 6= φ then either |i− k| = 2 (mod n + 1) and ci

⋂
ck is an

edge, or |i− k| ≥ 3 (mod n + 1) and ci

⋂
ck is a vertex.

A simple cube-arc is an alternating sequence a = (f0, c0, f1, c1, . . . , fk, ck) of
faces fi and cubes ci with fk 6= f0, denoted by a = (c0, c1, . . . , ck) or a(c0, ck)
for short, which is a proper subsequence of a simple cube-curve. A subarc of an
arc a = (c0, c1, . . . , ck) is an arc (ci, ci+1, . . . , cj), where 0 ≤ i ≤ j ≤ k.

We recall a few basic definitions from the book [7] (page 312). A (finite) word
defined over an alphabet A is a finite sequence of elements of A. The length |u|
of the word u = b1b2 . . . bn (where each bi ∈ A) is the number n of letters bi
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in u. An integer k ≤ 1 is a period of a word u = b1b2 . . . bn if bi = bi+k, for
i = 1, · · · , n− k. The smallest period of u is called the period of u. A finite word
u is periodic if the period of u is less than the length of u. A finite word u is
aperiodic if u is not periodic.

A simple cube-arc a = (c0, c1, . . . , ck) can correspond to a word over the
alphabet {1,2,3,4,5,6} as follows: A single cube c0 corresponds to the empty
word. If c1 is on the front (back, right, left, top, or bottom) of c0, then c1

corresponds to 1 (2, 3, 4 ,5, or 6). The other cubes of a define corresponding
numbers in the same way, encoding the direction from the previous cube. The
resulting word is called the word of a. A simple cube-arc a is periodic iff its
resulting word is periodic. a is aperiodic iff its resulting word is aperiodic.

In this paper, all cube-arcs are simple cube-arcs.
A tube g is the union of all cubes contained in a cube-curve g. A tube is a

compact set in R3, its frontier defines a polyhedron. A curve in R3 is complete
in g iff it has a nonempty intersection with every cube contained in g. Following
[6, 10, 11], we define:

Definition 1. An approximating minimum-length curve of a simple cube-curve
g is a shortest simple curve P which is contained and complete in tube g. The
length of a simple cube-curve g is defined to be the length l(P ).

It turns out that such a shortest simple curve P is always a polygonal curve,
called a minimum-length polygon (MLP), and it is uniquely defined if the cube-
curve is not only contained in a single layer of cubes of the 3D grid (see [10,
11]). If it is contained in one layer, then the MLP is uniquely defined up to
a translation orthogonal to that layer. We speak about the MLP of a simple
cube-curve.

A critical edge of a cube-curve g is such a grid edge which is incident with
exactly three different cubes contained in g. Figure 1 shows all the critical edges
of a simple cube-curve.

Definition 2. If e is a critical edge of g and l is a straight line such that e ⊂ l,
then l is called the critical line of e in g, or a critical line for short.

Fig. 1. Example of a first-class simple cube-curve which has both inner and end angles.
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Definition 3. Let e be a critical edge of g. Let P1 and P2 be the two end points
of e (i.e., they only differ in one coordinate). If one of the coordinates of P1 is
less than the corresponding coordinate of P2, then P1 is called the first end point
of e, otherwise P1 is called the second end point of e.

Definition 4. Assume a simple cube-curve g and a triple of consecutive critical
edges e1, e2, and e3 such that ei ⊥ ej, for all i, j = 1, 2, 3 with i 6= j. If e2 is
parallel to the x-axis (y-axis, or z-axis) and the x-coordinates (y-coordinates,
or z-coordinates) of two end points of e1 and e3 are equal, then we say that e1,
e2 and e3 form an end angle, and g has an end angle, denoted by ∠(e1, e2, e3);
otherwise we say that e1, e2 and e3 form an inner angle, and g has an inner
angle.

Figure 1 shows a simple cube-curve which has five end angles ∠(e21, e0, e1),
∠(e4, e5, e6), ∠(e6, e7, e8), ∠(e14, e15, e16)), ∠(e16, e17, e18), and many inner an-
gles (e.g., ∠(e0, e1, e2), ∠(e1, e2, e3), or ∠(e2, e3, e4)).

Let S ⊆ R3. The set {(x, y, 0) : ∃z(z ∈ R∧ (x, y, z) ∈ S)} is the xy-projection
of S, or projection of S for short. Analogously we have the yz- or xz-projection
of S.

Let e1, e2, . . . , em be a subsequence of all consecutive critical edges . . . , e0, e1,
. . . , em, em+1, . . . of a cube-curve g. Let m ≥ 2.

Definition 5. If e0 ⊥ e1, em ⊥ em+1, and ei ‖ ei+1, where i = 1, 2, . . . ,m− 1,
then e1, e2, . . . , em is a maximal run of parallel critical edges of g, and critical
edges e0 or em+1 are called adjacent to this run.

Figure 1 shows a simple cube-curve which has two maximal runs of parallel
critical edges: e11, e12 and e18, e19, e20, e21. The two adjacent critical edges of run
e11, e12 are e10 and e13; they are on two different grid planes. The two adjacent
critical edges of run e18, e19, e20, e21 are e17 and e0; they are also on two different
grid planes.

1.3 First-Class Simple Cube Curves; Structure of Paper

Definition 6. A simple cube-curve g is called first-class iff each critical edge of
g contains exactly one vertex of the MLP of g.

This paper focuses on first-class simple cube-curves,1 and general simple
cube-curves require further studies.

The paper is organized as follows. Section 2 describes theoretical fundamen-
tals for constructing our example in Section 4 where non of the nodes of the
MLP is a grid vertex. Section 2 also proves that the rubberband algorithm has
linear time complexity O(m), where m is the number of critical edges of a given
simple cube curve. Section 2 also presents theoretical fundamentals for Section 5.
Section 5 improves the original rubberband algorithm in its Option 3. Section 6
gives a few conclusions.
1 We can classify a simple cube-curve to be first class or not by running the rubberband

algorithm as described in [1]: the curve is first class iff option (O1) does not occur.
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2 Theoretical Results

We start with citing a basic theorem from [6]:

Theorem 1. Let g be a simple cube-curve. Critical edges are the only possible
locations of vertices of the MLP of g.

Let de(p, q) be the Euclidean distance between points p and q.

2.1 Theorem on Endangles

Let e0, e1, e2, . . ., em and em+1 be m + 2 consecutive critical edges in a simple
cube-curve, and let l0, l1, l2, . . ., lm and lm+1 be the corresponding critical lines.
We express a point pi(ti) = (xi +kxi

ti, yi +kyi
ti, zi +kzi

ti) on li in general form,
with ti ∈ R, where i equals 0, 1, . . ., or m + 1.

In the following, p(ti) will be denoted by pi for short, where i equals 0, 1,
. . ., or m + 1.

Lemma 1. If e1 ⊥ e2, then ∂de(p1,p2)
∂t2

can be written as (t2−α)β, where β > 0,
and β is a function of t1 and t2, α is equal to 0 if e1 and the first end point of
e2 are on the same grid plane, and α is equal to 1 otherwise.

Proof. Without loss of generality, we can assume that e2 is parallel to the z-
axis. In this case, the parallel projection (denoted by g′(e1, e2)) of all of g’s
cubes, contained between e1 and e2, is illustrated in Figure 2, where AB is the
projective image of e1, and C is that of one of the end points of e2.

Case 1. e1 and the first end point of e2 are on the same grid plane. Let the
two end points of e2 be (a, b, c) and (a, b, c + 1). Then the two end points of e1

are (a−1, b+k, c) and (a, b+k, c). Then the coordinates of p1 and p2 are (a−1+
t1, b+k, c) and (a, b, c+ t2) respectively, and de(p1, p2) =

√
(t1 − 1)2 + k2 + t2

2.
Therefore,

∂de(p1, p2)
∂t2

=
t2√

(t1 − 1)2 + k2 + t2
2

Fig. 2. Illustration for the proof of Lemma 1.
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Let α = 0 and

β =
1√

(t1 − 1)2 + k2 + t2
2

This proves the lemma for Case 1.
Case 2. Now assume that e1 and the first end point of e2 are on different grid

planes (i.e., e1 and the second end point of e2 are on the same grid plane). Let
the two end points of e2 be (a, b, c) and (a, b, c + 1). Then the two end points of
e1 are (a − 1, b + k, c + 1) and (a, b + k, c + 1). Then the coordinates of p1 and
p2 are (a − 1 + t1, b + k, c + 1) and (a, b, c + t2), respectively, and de(p1, p2) =√

(t1 − 1)2 + k2 + (t2 − 1)2. Therefore,

∂de(p1, p2)
∂t2

=
t2 − 1√

(t1 − 1)2 + k2 + (t2 − 1)2

Let α = 1 and

β =
1√

(t1 − 1)2 + k2 + (t2 − 1)2

This proves the lemma for Case 2. ut

Lemma 2. If e1 ‖ e2, then

∂de(p1, p2)
∂t2

= (t2 − t1)β

for some β > 0, where β is a function of t1 and t2.

Proof. Without loss of generality, we can assume that e2 is parallel to the z-
axis. In this case, the parallel projection (denoted by g′(e1, e2)) of all of g’s
cubes contained between e1 and e2 is illustrated in Figure 3, where A is the
projective image of one of the end points of e1, and B is that of one of the end
points of e2.

Case 1. Edges e1 and e2 are on the same grid plane. Let the two end points
of e2 be (a, b, c) and (a, b, c + 1). Then the two end points of e1 are (a, b + k, c)

Fig. 3. Illustration for the proof of Lemma 2. Left: Case 1. Right: Case 2.
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and (a, b + k, c + 1). Then the coordinates of p1 and p2 are (a, b + k, c + t1) and
(a, b, c + t2), respectively, and de(p1, p2) =

√
(t2 − t1)2 + k2. Therefore,

∂de(p1, p2)
∂t2

=
t2 − t1√

(t2 − t1)2 + k2

Let
β =

1√
(t2 − t1)2 + k2

This proves the lemma for Case 1.
Case 2. Now assume that edges e1 and e2 are on different grid planes. Let

the two end points of e2 be (a, b, c) and (a, b, c + 1). Then the two end points
of e1 are (a − 1, b + k, c) and (a − 1, b + k, c + 1). Then the coordinates of p1

and p2 are (a − 1, b + k, c + t1) and (a, b, c + t2) respectively, and de(p1, p2) =√
(t2 − t1)2 + k2 + 1. Therefore,

∂de(p1, p2)
∂t2

=
t2 − t1√

(t2 − t1)2 + k2 + 1

Let
β =

1√
(t2 − t1)2 + k2 + 1

This proves the lemma for Case 2. ut

This Lemma will be used later for the proof of Lemma 6. – Let di =
de(pi−1, pi) + de(pi, pi+1), for i = 1, 2, . . . ,m.

Theorem 2. If ei ⊥ ej, where i, j = 1, 2, 3 and i 6= j, then e1, e2 and e3 form
an endangle iff the equation

∂(de(p1, p2) + de(p2, p3))
∂t2

= 0

has a unique root 0 or 1.

Proof. Without loss of generality, we can assume that e2 is parallel to the z-axis.
(A) If e1, e2 and e3 form an end angle, then by Definition 4, the z-coordinates

of two end points of e1 and e3 are equal.
Case A1. Edges e1, e3 and the first end point of e2 are on the same grid

plane. By Lemma 1,
∂(de(p1, p2)

∂t2
= (t2 − α1)β1

where α1 = 0 and β1 > 0, and

∂(de(p2, p3)
∂t2

= (t2 − α2)β2
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where α2 = 0 and β2 > 0. So we have

∂(de(p1, p2) + de(p2, p3))
∂t2

= t2(β1 + β2)

Therefore, the equation of the theorem has the unique root t2 = 0.
Case A2. Edges e1, e3 and the second end point of e2 are on the same grid

plane. By Lemma 1,
∂(de(p1, p2)

∂t2
= (t2 − α1)β1

where α1 = 1 and β1 > 0, and

∂(de(p2, p3)
∂t2

= (t2 − α2)β2

where α2 = 1 and β2 > 0. So we have

∂(de(p1, p2) + de(p2, p3))
∂t2

= (t2 − 1)(β1 + β2)

Therefore, the equation of the theorem has the unique root t2 = 1.
(B) Conversely, if the equation of the theorem has a unique root 0 or 1, then

e1, e2 and e3 form an end angle. Otherwise, e1, e2 and e3 form an inner angle.
By Definition 4, the z-coordinates of two end points of e1 are not equal to z-
coordinates of two end points of e3 (Note: Without loss of generality, we can
assume that e2 ‖ z-axis.). So e1 and e3 are not on the same grid plane.

Case B1. Edge e1 and the first end point of e2 are on the same grid plane,
while e3 and the second end point of e2 are on the same grid plane. By Lemma 1,

∂(de(p1, p2)
∂t2

= (t2 − α1)β1

where α1 = 0 and β1 > 0, while

∂(de(p2, p3)
∂t2

= (t2 − α2)β2

where α2 = 1 and β2 > 0. So we have

∂(de(p1, p2) + de(p2, p3))
∂t2

= t2β1 + (t2 − 1)β2

Therefore t2 = 0 or 1 is not a root of the equation of the theorem. This is a
contradiction.

Case B2. Edge e1 and the second end point of e2 are on the same grid plane,
while e3 and the first end point of e2 are on the same grid plane. By Lemma 1,

∂(de(p1, p2)
∂t2

= (t2 − α1)β1
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where α1 = 1 and β1 > 0, while

∂(de(p2, p3)
∂t2

= (t2 − α2)β2

where α2 = 0 and β2 > 0. So we have

∂(de(p1, p2) + de(p2, p3))
∂t2

= (t2 − 1)β1 + t2β2

Therefore, t2 = 0 or 1 is not a root of the equation of the theorem. This is a
contradiction as well. ut

2.2 Theorem on Inner Angles

Theorem 3. If ei ⊥ ej, where i, j = 1, 2, 3 and i 6= j, then e1, e2 and e3 form
an inner angle iff the equation

∂(de(p1, p2) + de(p2, p3))
∂t2

= 0

has a root t20 such that 0 < t20 < 1.

Proof. If edges e1, e2 and e3 form an inner angle, then by Definition 4, e1, e2

and e3 do not form an end angle. By Theorem 2, 0 or 1 is not a root of the
equation of the theorem. By Lemma 1,

∂(de(p1, p2) + de(p2, p3))
∂t2

= (t2 − α1)β1 + (t2 − α2)β2

where α1, α2 are 0 or 1, β1 > 0 is a function of t1 and t2, and β2 > 0 is a function
of t2 and t3. So α1 6= α2 (i.e., α1 = 0 and α2 = 1 or α1 = 1 and α2 = 0).
Therefore, the equation of the theorem has a root t20 such that 0 < t20 < 1.

Conversely, if the equation of the theorem has a root t20 such that 0 < t20 < 1,
then by Theorem 2, critical edges e1, e2 and e3 do not form an end angle. By
Definition 4, e1, e2 and e3 do form an inner angle. ut

2.3 Grid Plane Characterization Theorem

Assume that e0 ⊥ e1, e2 ⊥ e3, and e1 ‖ e2. Assume that p(ti0) is a vertex of the
MLP of g, where i = 1 or i = 2. Then we have the following:

Lemma 3. If e0, e3 and the first end point of e1 are on the same grid plane,
and ti0 is a root of

∂di

∂ti
= 0

then ti0 = 0, where i = 1 or i = 2.
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Fig. 4. Illustration of the proof of Lemma 3.

Proof. From p0(t0)p1(0) ⊥ e1 it follows that

de(p0(t0)p1(0)) = min{de(p0(t0), p1(t1)) : t1 ∈ [0, 1]}

(see Figure 4). Analogously, we have

de(p2(0)p3(t3)) = min{de(p2(t2), p3(t3)) : t2 ∈ [0, 1]}

and
de(p1(0)p2(0)) = min{de(p1(t1), p2(t2)) : t1, t2 ∈ [0, 1]}

Therefore we have

min{de(p0(t0), p1(t1)) + de(p1(t1), p2(t2)) + de(p2(t2), p3(t3)) : t1, t2 ∈ [0, 1]}
≥ de(p0(t0), p1(0)) + de(p1(0), p2(0)) + de(p2(0), p3(t3))

This proves the lemma. ut

Assume that we have e0 ⊥ e1, em ⊥ em+1, and ei ‖ ei+1, (i.e., the set {e1,
e2, . . ., em } is a maximal run of parallel critical edges of g, and e0 or em+1 are
the adjacent critical edges of this set). Furthermore, let p(ti0) be a vertex of the
MLP of g, where i = 1, 2, . . . ,m−1. Analogously to the previous lemma, we also
have the following two lemmas:

Lemma 4. If e0, em+1 and the first point of e1 are on the same grid plane, and
ti0 is a root of

∂di

∂ti
= 0

then ti0 = 0, where i = 1, 2, . . ., m.

Lemma 5. If e0, em+1 and the second end point of e1 are on the same grid
plane, and ti0 is a root of

∂di

∂ti
= 0

then ti0 = 1, where i = 1, 2, . . ., m.

Now we study the case that critical edges are on different grid planes. (Note
that even two parallel edges can be on different grid planes.)
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Lemma 6. If e0 and em+1 are on different grid planes, and ti0 is a root of

∂di

∂ti
= 0

where i = 1, 2, . . ., m, then 0 < t1 < t2 < . . . < tm < 1.

Proof. Assume that e0 and the first end point of e1 are on the same grid plane,
and em+1 and the second end point of e1 are on the same grid plane. Then (by
Lemmas 1 and 2), the derivatives ∂di

∂ti
, where i = 1, 2, . . ., m, have the following

forms:

∂d1

∂t1
= t1b11 + (t1 − t2)b12

∂d2

∂t2
= (t2 − t1)b21 + (t2 − t3)b22

∂d3

∂t3
= (t3 − t2)b31 + (t3 − t4)b32

. . .
∂dm−1

∂tm−1
= (tm−1 − tm−2)bm−11 + (tm−1 − tm)bm−12 , or

∂dm

∂tm
= (tm − tm−1)bm1 + (tm − 1)bm2 (1)

where bi1 > 0, bi1 is a function of ti and ti−1, bi2 > 0, and bi2 is a function of ti
and ti+1, for i = 1, 2, . . . ,m.

If t10 < 0, then (by ∂d1
∂t1

= 0) we have that t10b11 + (t10 − t20)b12 = 0. Since
b11 > 0 and b12 > 0, we also have t10 − t20 > 0 (i.e., t10 > t20).

Analogously, because of ∂d2
∂t2

= 0 we have (t20 − t10)b21 + (t20 − t30)b22 = 0.
This means that we also have t20 > t30 .

Analogously we can also verify that t30 > t40 , . . ., and tm−10 > tm0 . There-
fore, by Equation (1) we have tm0 − 1 > 0. Altogether we have 0 > t10 > t20 >
t30 > . . . > tm0 > 1. This is an obvious contradiction.

If t10 = 0, then (by ∂d1
∂t1

= 0) we have that t20 = 0. Analogously, ∂d2
∂t2

= 0
implies t30 = 0, and we also have t40 = 0, . . ., tm0 = 0 due to the same argument.
But, by Equation (1) we have

∂dm

∂tm
= (tm − 1)bm2 = −bm2 < 0

This contradicts ∂dm

∂tm
= 0.

If t10 ≥ 1, then (by ∂d1
∂t1

= 0) we have t10b11 + (t10 − t20)b12 = 0. Due to
b11 > 0 and b12 > 0 we have t10 − t20 < 0 (i.e., t10 < t20). Analogously, by
∂d2
∂t2

= 0 it follows that (t20 − t10)b21 +(t20 − t30)b22 = 0. Then we have t20 < t30 ,
and we also have t30 < t40 , . . ., tm−10 < tm0 . Therefore, by Equation (1) we have
tm0 − 1 < 0. Altogether we have 1 ≤ t10 < t20 < t30 < . . . < tm0 < 1, which is
again an obvious contradiction. ut
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Let ti0 be a root of ∂di

∂ti
= 0, where i = 1, 2, . . ., m. We apply Lemmas 4, 5

and 6 and obtain

Theorem 4. Edges e0 and em+1 are on different grid planes iff 0 < t10 < t20

< . . . < tm0 < 1.

2.4 Basics for a Necessary Correction of Option 3

The following two Lemmas will be used in Section 5 when revising Option 3 of
the original rubberband algorithm. Let p1, p2 be points on a critical edge ei of
curve g, and p a point on a critical edge ej of g.

Lemma 7. If the line segments pp1, pp2 are contained and complete in tube g,
then the triangular region 4(p1, p2, p) is also contained and complete in g.

Proof. Without loss generality, we can assume that i < j. Let a(ei, ej) be the
arc from the first cube which contains the critical edge ei to the last cube which
contains the critical edge ej . (Note that a set of consecutive critical edges will
uniquely define a cube-curve.) If line segments pp1, pp2 are contained and com-
plete in g, then the xy- (yz- and xz-) projection of 4(p1, p2, p) is contained and
complete in the xy- (yz- and xz-) projection of a(ei, ej). Therefore, the triangu-
lar region 4(p1, p2, p) is contained and complete in the tube of a(ei, ej). ut

Lemma 8. Let d2(t1, t2, t3) = de(p1, p2)+de(p2, p3). It follows that d2(t1, t2, t3)
is increasing with respect to t2.

Proof. Let the coordinates of pi be (xi + kxi
ti, yi + kyi

ti, zi + kzi
ti), where i

equals 1 or 3. Since pi ∈ ei ⊂ li, and ei is a critical edge which is an edge of an
orthogonal grid, only one of the values kxi

, kyi
and kzi

can be 1 and the other
two must be zero. We consider one of these cases where the coordinates of p1 are
(x1 + t1, y1, z1), the coordinates of p2 are (x2, y2 + t2, z2), and the coordinates of
p3 are (x3, y3, z3 + t3). Then

d2 = de(p1, p2) + de(p2, p3)

=
√

(t2 − (y1 − y2))2 + (x1 + t1 − x2)2 + (z1 − z2)2

+
√

(t2 − (y3 − y2))2 + (x3 − x2)2 + (z3 + t3 − z2)2

This can be rewritten as d2 =
√

(t2 − a1)2 + b2
1 +

√
(t2 − a2)2 + b2

2, where b1

and b2 are functions of t1 and t3. Then we have

∂d2

∂t2
=

t2 − a1√
(t2 − a1)2 + b2

1

+
t2 − a2√

(t2 − a2)2 + b2
2

(2)

and

∂2d2

∂t2
2 =

1√
(t2 − a1)2 + b2

1

− (t2 − a1)2

[(t2 − a1)2 + b2
1]3/2

+
1√

(t2 − a2)2 + b2
2

− (t2 − a2)2

[(t2 − a2)2 + b2
2]3/2
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This simplifies to

∂2d2

∂t2
2 =

b2
1

[(t2 − a1)2 + b2
1]3/2

+
b2
2

[(t2 − a2)2 + b2
2]3/2

> 0 (3)

This implies that d2(t1, t2, t3) is increasing with respect to t2. All other cases
follow analogously. ut

3 Theorem about Linear Time Complexity

A polygonal path is a continuous arc composed of one or more line segments; it
is simple iff only two consecutive line segments of it intersect, and they do so
only intersect at one of their endpoints.

Let Qi(xi, yi, 0) be the projection of Pi(xi, yi, zi) onto the xy− plane, where
i = 1, 2 (see Figure 5).

Lemma 9. If Q2 is on the left of OQ1 then P2 is on the left of OP1.

Proof. Since 4OP1P2 can be obtained by continuously moving Qi to Pi, where
i = 1, 2. ut

Lemma 10. Option 2 of the rubberband algorithm (see Appendix 1) can be com-
puted in O(m) time, where m is the number of critical edges intersected by the
polygonal path between pi−1 and pi+1.

Proof. We start with vertices of the initial polygon at center points of each
critical edge of the given cube-curve.

It follows that the vertices of a resulting polygon, using only Option 1 of the
rubberband algorithm, are still at the center points of critical edges.

Option 2 of the algorithm can now be implemented as follows: Let A be the
cube-arc starting at the first cube which contains critical edge ei−1, to the last
cube which contains critical edge ei+1. Proceed as follows:

Fig. 5. Illustration for Lemma 9.
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1. Compute all the intersection points, denoted by SI , of the closed triangular
region 4(pi−1, pi, pi+1) with consecutive critical edges from ei−1 to ei+1 (note:
they are between both endpoints of a critical edge). This can be computed in
O(m1) time, where m1 = |SI | ≤ is the number of critical edges in A.

2. Let SP be the set of three planes: xy-plane, yz-plane, and zx-plane. Select
a plane α ∈ SP , such that α is not perpendicular to 4(pi−1, pi, pi+1). This can
be computed in O(1) time,

3. Project SI onto α. Let the resulting set be S′
I .

4. Apply the Melkman algorithm [9] (which is linear, see [12]) to find the
convex arc, denoted by A′ in α.

5. By Lemma 9 (the projection of the convex hull of SI onto α is the convex
hull of S′

I); compute a convex arc, denoted by A′′, in 4(pi−1, pi, pi+1) such that
the projection of A′′ onto α is A′.

6. If there exists a vertex v of A′′ such that v is not inside of the tube g, then
remove v from SI . Go to Step 3. Otherwise, replace A by A′′ and Stop.

Each of the Steps 3 to 6 can be computed in O(m2) time, where m2 = |S′
I |

= |SI | ≤ the number of critical edges in A.
Alltogether, it follows that the convex arc can be computed in O(m) time,

where m is the number of critical edges intersecting the arc between pi−1 and
pi+1. ut

Lemma 11. Point p1 ∈ e1, defined by de(p1, p0)+de(p1, p2) = min{p1|de(p1, p0)+
de(p1, p2), p1 ∈ e2}, can be computed in O(1) time.

Proof. Let the two endpoints of e1 be a1(a11 , a12 , a13) and b1(b11 , b12 , b13). Let
the coordinates of p0 be (p01 , p02 , p03). p1 can be written as (a11+(b11−a11)t, a12+
(b12 − a12)t, a13 + (b13 − a13)t). The formula

de(p1, p0) =

√√√√ 3∑
i=1

((a1i
− p0i

) + (b1i
− a1i

)t)2

can be simplified: The straight line a1b1 is isothetic (i.e., parallel to one of the
three coordinate axes). It follows that only one element of the set {b1i

− a1i
: i

=1,2,3 } is equal to 1, and the other two are equal to 0. Without loss of generality
we can assume that

de(p1, p0) =
√

(t + A1)2 + B1

where A1 and B1 are functions of a1i , b1i and p0i , for i = 0, 1, 2. – Analogously,

de(p1, p2) =
√

(t + A2)2 + B2

where A2 and B2 are functions of a1i , b1i and p2i , for i = 0, 1, 2. In order
to find a point p1 ∈ e1 such that de(p1, p0) + de(p1, p2) = min{p1|de(p1, p0) +
de(p1, p2), p1 ∈ e1}, we can solve the equation

∂(de(p1, p0) + de(p1, p2))
∂t

= 0

The unique solution is t = −(A1B2 + A2B1)/(B2 + B1). ut
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Theorem 5. The rubberband algorithm has linear time complexity O(m), where
m is the number of critical edges of the given simple cube curve.

Proof. Lemma 10 implies that all operations in Option 2 of the rubberband
algorithm can be computed in O(m) time. Lemma 11 implies that all operations
in Option 3 of the algorithm can be computed in O(m) time. This proves the
theorem. ut

4 Example of a “Difficult” Simple Cube Curve

We provide an example to show that there are simple cube-curves such that
none of the vertices of its MLP is a grid vertex. See Figure 6 and Table 1 for an
example of such a cube-curve, which lists the coordinates of the critical edges
e0, e1, . . . , e19 of g. Let v(t0), v(t1), . . . , v(t19) be the vertex of the MLP of g such
that v(ti) is on ei and ti is in [0, 1], where i = 0, 1, 2, . . . , 19.

See Appendix 2 for a complete list of all ∂di

∂ti
(i = 0, 1, . . ., 19) for this

cube-curve g. It follows that there is no end angle in g, but we have six inner
angles:

∠(e2, e3, e4)), ∠(e3, e4, e5)), ∠(e6, e7, e8)), ∠(e9, e10, e11)), ∠(e10, e11, e12)),
and ∠(e13, e14, e15)).

By Theorem 3 we have that t3, t4, t7, t10, t11 and t14 are all in the open interval
(0, 1). — Figure 6 shows that e1 ‖ e2, and e0 and e3 are on different grid planes.
By Theorem 4 it follows that t1 and t2 are in (0, 1), too. Analogously we have
that t5 and t6 are in (0, 1), t8 and t9 are in (0, 1), t12 and t13 are in (0, 1),
t15, t16 and t17 are in (0, 1), and t18, t19 and t0 are in (0, 1). Therefore, each ti
is in the open interval (0, 1), where i = 0, 1, . . . , 19, which proves that g is a
simple cube-curve such that none of the vertices of its MLP is a grid vertex.

Fig. 6. A simple cube-curve such that none of the vertices of its MLP is a grid vertex.
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Critical edge xi1 yi1 zi1 xi2 yi2 zi2

e0 -1 4 7 -1 4 8
e1 1 4 7 1 5 7
e2 2 4 5 2 5 5
e3 4 5 4 4 5 5
e4 4 7 4 5 7 4
e5 5 7 2 5 8 2
e6 7 7 2 7 8 2
e7 7 8 4 8 8 4
e8 8 10 4 8 10 5
e9 10 10 4 10 10 5
e10 10 8 5 11 8 5
e11 11 7 7 11 8 7
e12 12 7 7 12 7 8
e13 12 5 7 12 5 8
e14 10 4 8 10 5 8
e15 9 4 10 10 4 10
e16 9 0 10 10 0 10
e17 9 0 8 10 0 8
e18 9 1 7 9 1 8
e19 -1 2 7 -1 2 8

Table 1. Coordinates of endpoints of critical edges of the curve of Figure 6.

5 Corrected Rubberband Algorithm

The rubberband algorithm was published in [1] and [7], and the iteration steps
of this (original) algorithm are given in Appendix 1.

Figure 7 shows a non-first-class simple cube-curve (see Table 2 in Appendix
2 for the data of this curve). The figure also shows the resulting polygons of
three options of the original rubberband algorithm.

We start with the polygonal curve L1. After applying Option 1 we obtain the
curve L2. Then we apply Option 2 and obtain the curve L3. Finally we apply
Option 3 as given in the original rubberband algorithm and we obtain curve L4

as final result.
For the resulting polygon L4 note that edge p(t90)p(t130) is not contained in

the tube g. This means that the final polygon is not contained in the tube g! This
is because Option 3 of the original algorithm did not check whether pi−1pnew

and pnewpi+1 are both contained in the tube g. A minor but essential correction
is required to fix this problem.

The figure also shows the corrected polygon L5. Note that edge p(t̄90)p(t̄130)
is now contained in the tube g.

Figure 8 also shows that there are cases where non of the two endpoints of
an edge of the polygonal curve (resulting from Option 2) is allowed any move
along a critical edge (This allows a further modification of the original Option
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Fig. 7. An Example of a non-first-class simple cube-curve. The figure shows resulting
polygons when allpying options of the original or of the corrected rubberband algo-
rithm, respectively. (1) shows that edge p(t90)p(t130) is not contained in the tube g
while p(t̄90)p(t̄130) is contained in it. (2) shows the polygons of (1) with all the cubes
removed.

3, denoted by (O3).): We consider c1, c2 which are two cubes, and two critical
edges e1, e2. Line p1p2 is contained and complete in the arc from the cube which
contains e1 to the cube which contains e2. p1p2 intersects with c1 and c2 only at

Fig. 8. An example where any move of one of the two end points of a line segment
along critical edges is impossible.
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Fig. 9. Illustration of Option 3. Left: Case 1. Right: Case 2.

a single point each. If p1 moves to the left along e1, then p1p2 will not intersect
with c2 anymore. If p1 moves to the right along e1, then p1p2 will not intersect
with c1 anymore. If p2 moves up along e2, then p1p2 will not intersect with
c2 anymore. If p2 moves down along e2, then p1p2 will not intersect with c1

anymore.
The following (revised) Option 3 ensures that the final polygon is always

contained and complete in the tube g. We use Figure 9 for illustration of the
revised Option 3:

Let pi = pi(ti) and pnew = pi(ti0). By (O3), ti, ti0 ∈ [0, 1]. Let ε be a sufficiently
small positive real number.

(Case 1) ti < ti0 (see Figure 9 on the left):
(Case 1.1) both pi−1p(ti + ε) and pi+1p(ti + ε) are inside the arc from pi−1

to pi+1: If both pi−1pnew and pi+1pnew are inside the arc from ei−1 to ei+1, then
p̄new = pnew. Otherwise, by Lemmas 7 and 8, use binary search to find a value
t̄i0 ∈ (ti, ti0), and then let p̄new = p(t̄i0).

(Case 1.2) either pi−1p(ti + ε) or pi+1p(ti + ε) are outside the arc from ei−1

to ei+1: Then let p̄new = pi(ti) = pi.
(Case 2) ti0 < ti (see Figure 9 on the right):
(Case 2.1) both pi−1p(ti − ε) and pi+1p(ti − ε) are inside the arc from pi−1

to pi+1: If both pi−1pnew and pi+1pnew are inside the arc from ei−1 to ei+1, then
p̄new = pnew. Otherwise, (again by Lemmas 7 and 8) use binary search to find
a value t̄i0 ∈ (ti0, ti), and then let p̄new = p(t̄i0).

(Case 2.2) either pi−1p(ti − ε) or pi+1p(ti − ε) are outside the arc from ei−1

to ei+1: Then let p̄new = pi(ti) = pi.

This revised Option 3 contains the test of inclusion (which was missing in
the original algorithm), and it details the steps for minimizing the length of the
calculated polygonal curve, providing a more specific description of Option 3
compared to the original presentation of the rubberband algorithm.

6 Conclusions

We constructed a non-trivial simple cube-curve such that none of the vertices of
its MLP is a grid vertex. Indeed, Theorems 2 and 4, and Lemmas 5 and 6 allow
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the conclusion that given a simple first-class cube-curve g, none of the vertices
of its MLP is at a grid point position iff g has not any end angle, and for every
maximal run of parallel edges of g, its two adjacent critical edges are not on the
same grid plane.

It follows that the (provable correct) MLP algorithm proposed in [8] cannot
be applied to this curve, because this algorithm requires at least one end angle for
decomposing a given cube-curve into arcs. Of course, the rubberband algorithm
is applicable, and will produce a result (i.e., a polygonal curve). However, in
this case we are still unable to show whether this result is (always) the MLP
of the given cube-curve or not. So far, in a large number of experiments (using
randomly generated simple cube-curves as input), no incorrect result has been
detected (after fixing Option 3 as described above).

Acknowledgements. Reviewers’ comments have been very helpful for re-
vising an earlier version of this paper, and they are very much appreciated.
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10. F. Sloboda, B. Zaťko, and R. Klette. On the topology of grid continua. In Proc.
Vision Geometry, pages 52–63, Vol. 3454, SPIE Press, 1998.
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Appendix 1: Iteration steps of the rubberband algorithm

Let Pt = (p0, p1, · · · , pm) be a polygonal curve contained in a tube g. A
polygonal curve Q is a g-transform of P iff Q may be obtained from P by a
finite number of steps, where each step is a replacement of a triple a, b, c of
vertices by a polygonal sequence a, b1, · · · , bk, c such that the polygonal sequence
a, b1, · · · , bk, c is contained in the same set of cubes of g as the polygonal sequence
a, b, c.

Assume a polygonal curve Pt = (p0, p1, · · · , pm) and three pointers addressing
vertices at positions i−1, i and i+1 in this curve. There are three different options
that may occur which define a specific g-transform:

(O1) Point pi can be deleted iff pi−1pi+1 is a line segment within the tube.
Then the subsequence (pi−1, pi, pi+1) is replaced in the curve by (pi−1, pi+1). In
this case, the algorithm continues with vertices pi−1, pi+1, pi+2.

(O2) The closed triangular region 4(pi−1, pi, pi+1) intersects more than just
three critical edges of pi−1, pi and pi+1 (i.e., a simple deletion of pi would not be
sufficient anymore). This situation is solved by calculating a convex arc and by
replacing point pi by a sequence of vertices q1, · · · , qk on this convex arc between
pi−1 and pi+1 such that the sequence of line segments pi−1q1, . . . , qkpi+1 lies
within the tube. In this case, the algorithm continues with a triple of vertices
starting with the calculated new vertex qk. If (O1) and (O2) do not lead to any
change, the third option may lead to an improvement (i.e., a shorter polygonal
curve which is still contained and complete in the given tube).

(O3) Point pi may be moved on its critical edge to obtain an optimum position
pnew minimizing the total length of both line segments pi−1pnew and pnewpi+1.
First, find popt ∈ le such that |popt − pi−1| + |popt − pi+1| = minp∈leL(p) with
L(p) = |p− pi−1|+ |p− pi+1|. Then, if popt lies on the closed critical edge e, let
pnew = popt. Otherwise, let pnew be that vertex bounding e and lying closest to
popt.

Note that Option 3 of this original rubberband algorithm is not asking for
testing inclusion of the generated new segments within tube g. This test needs
to be added.
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Appendix 2: Data for two examples in the paper

Example 1: Below we list all ∂di

∂ti
(i = 0, 1, . . ., 19) for the cube-curve g as

shown in Figure 6:

dt0 =
t0√

t0
2 + t1

2 + 4
+

t0 − t19√
(t0 − t19)2 + 4

dt1 =
t1√

t0
2 + t1

2 + 4
+

t1 − t2√
(t1 − t2)2 + 5

dt2 =
t2 − t1√

(t2 − t1)2 + 5
+

t2 − 1√
(t2 − 1)2 + (t3 − 1)2 + 4

dt3 =
t3 − 1√

(t2 − 1)2 + (t3 − 1)2 + 4
+

t3√
t3

2 + t4
2 + 4

dt4 =
t4√

t3
2 + t4

2 + 4
+

t4 − 1√
(t4 − 1)2 + t5

2 + 4

dt5 =
t5√

(t4 − 1)2 + t5
2 + 4

+
t5 − t6√

(t5 − t6)2 + 4

dt6 =
t6 − t5√

(t6 − t5)2 + 4
+

t6 − 1√
(t6 − 1)2 + t7

2 + 4

dt7 =
t7√

(t6 − 1)2 + t7
2 + 4

+
t7 − 1√

(t7 − 1)2 + t8
2 + 4

dt8 =
t8√

(t7 − 1)2 + t8
2 + 4

+
t8 − t9√

(t8 − t9)2 + 4

dt9 =
t9 − t8√

(t9 − t8)2 + 4
+

t9 − 1√
(t9 − 1)2 + t10

2 + 4

dt10 =
t10√

(t9 − 1)2 + t10
2 + 4

+
t10 − 1√

(t10 − 1)2 + (t11 − 1)2 + 4

dt11 =
t11 − 1√

(t11 − 1)2 + (t10 − 1)2 + 4
+

t11√
t11

2 + t12
2 + 1

dt12 =
t12√

t11
2 + t12

2 + 1
+

t12 − t13√
(t12 − t13)2 + 4

dt13 =
t13 − t12√

(t13 − t12)2 + 4
+

t13 − 1√
(t13 − 1)2 + (t14 − 1)2 + 4

dt14 =
t14 − 1√

(t13 − 1)2 + (t14 − 1)2 + 4
+

t14√
t14

2 + (t15 − 1)2 + 4
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dt15 =
t15 − 1√

t14
2 + (t15 − 1)2 + 4

+
t15 − t16√

(t15 − t16)2 + 16

dt16 =
t16 − t15√

(t16 − t15)2 + 16
+

t16 − t17√
(t16 − t17)2 + 4

dt17 =
t17 − t16√

(t17 − t16)2 + 4
+

t17√
t17

2 + (t18 − 1)2 + 1

dt18 =
t18 − 1√

t17
2 + (t18 − 1)2 + 1

+
t18 − t19√

(t18 − t19)2 + 101

dt19 =
t19 − t18√

(t19 − t18)2 + 101
+

t19 − t0√
(t19 − t0)2 + 4

Example 2: For the example of a non-first class cube curve of Figure 7 we
obtain the following t values, using either the original rubberband algorithm, or
its revised version (new Option 3).

Critical edge xi1 yi1 zi1 xi2 yi2 zi2 ti0 t̄i0

e0 0.5 1 -0.5 0.5 1 0.5 1 1
e1 -0.5 1 0.5 0.5 1 0.5 - -
e2 -0.5 2 1.5 0.5 2 1.5 0.7574 0.7561
e3 -0.5 3 1.5 0.5 3 1.5 0.5858 0.5837
e4 -0.5 4 1.5 0.5 4 1.5 0.4142 0.4113
e5 -0.5 5 1.5 0.5 5 1.5 0.2426 0.2388
e6 -0.5 6 1.5 0.5 6 1.5 - -
e7 -0.5 6 1.5 -0.5 6 2.5 1 0.9581
e8 -0.5 6 2.5 -0.5 7 2.5 - -
e9 -1.5 6 3.5 -1.5 7 3.5 0 0.5
e10 -2.5 6 3.5 -2.5 6 4.5 - -
e11 -3.5 6 4.5 -2.5 6 4.5 - -
e12 -3.5 5 4.5 -3.5 6 4.5 - -
e13 -3.5 5 5.5 -3.5 6 5.5 0.2612 0.5
e14 -4.5 5 5.5 -3.5 5 5.5 - -
e15 -4.5 5 6.5 -3.5 5 6.5 - -
e16 -3.5 4 6.5 -3.5 5 6.5 1 1
e17 1.5 4 6.5 1.5 5 6.5 0.5455 0.5455
e18 1.5 4 0.5 2.5 4 0.5 0 0
e19 1.5 1 -0.5 1.5 1 0.5 1 1

Table 2. Coordinates of endpoints of critical edges in Figure 7 and final t values
obtained from the original or the revised rubberband algorithm. p(t90)p(t130) is not
contained in tube g (see also Figure 7). p(t̄90)p(t̄130) is contained in the curve .


